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Synthesis of Sesquiterpene Antitumor Lactones. 2. 
A New Stereocontrolled Total Synthesis 
of (±)-Vernolepin 

Sir: 
Vernolepin (1), a novel sesquiterpene from Vernonia hym-

enolepis has been shown to have significant in vitro cytotoxicity 
(KB) and in vivo tumor inhibitory activity against Walker 
intramuscular carcinosarcoma in rats.1 Extensive studies have 
recently culminated in the total syntheses by Grieco2 and by 
Danishefsky.3 We would like to report a new stereospecific 
total synthesis of I.4 
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Previous work in our laboratory,5 which established the 
facile construction of a cis-fused 5-valerolactone system (2) 
by intramolecular Michael addition6 and the subsequent 
conversion to the cyclopropane derivative (3), demonstrated 
the feasibility of the total synthesis of 1 via 3 as a key inter­
mediate. Our stereochemical strategy toward this elemanoid 
could further be developed along the lines of Scheme I, which 

Scheme I 
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firstly involved elaboration of a system having two axial hy­
droxyl groups and an exo double bond in the B ring which is 
held in the unnatural conformation owing to interference of 
the bulky substituents.7 Secondly, induction of the asymmetric 
center at the C-7 position could be ensured by hydride reduc­
tion with assistance of the axial hydroxyl groups, and thus the 
reduction eventuated in conformation inversion to natural 
form. 

r 
J T l . COCBu' 

COOEtH COOBu1 

COOBu1 
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'COOBu1 

COOEtH COOBu1 
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Condensation of 3 with tert-\>u\y\ malonate in the presence 
of TiCU-Py in THF8 (affording 4) and subsequent treatment 
with DBU (THF, room temperature, 2 h) gave in 58% overall 
yield the thermodynamically more stable deconjugated product 
5: mp 86-87 0C; 8 (ppm) 5.97 (br d, 7 = 6 Hz), 3.94 (s), 4.05 
(2 H, AB q, / = 11 Hz), 2.84 (d, 7 = 9.5 Hz), 2.55 (br d, J = 
18 Hz), 2.40 (d, 7 = 9.5 Hz), 2.20 (dd, 7 = 18, 6 Hz9). 
Opening of the cyclopropane ring in 5 at C-6 position was 
achieved efficiently by sodium p-methoxythiophenolate4b10 

in THF to afford 6 (88%) (5 5.96 (br t, 7 = 4 Hz), 4.35 (s), 4.19 
(2 H, AB q, J = 9 Hz), 3.58 (d, 7 = 10 Hz), 3.25 (br s, 
>CHS), 3.04 (dd, 7 = 10, 3 Hz, junction H), 2.32 (2 H, d, AB 
q, J = 4, 18 Hz)), in which the arylthio group is axially ori­
ented. After oxidation of 6 at -78 0C (CH2Cl2, mCPBA), the 
resulting diastereoisomeric sulfoxides 7 (84%) were heated in 
EtOH at 60 0C for 10 h in the presence of trimethyl phosphite 
affording the allyl alcohol (8) in 87% yield by [2,3]-sigmatropic 
rearrangement.10 
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COOEt COOBu1 

8 

Epoxidation of 8 with mCPBA in wet CH2Cl2 (room tem­
perature, 20 h) occurred selectively and gave in 81% yield the 
epoxy alcohol (9): S 5.8-5.1 (3 H, ABX, J =17,11 Hz), 4.18 
(2 H, AB q, 7 , 11 Hz), 4.11 (s), 3.56 (d, 7 = 9.5 Hz), 3.20 (br 
s, H oxirane), 3.06 (d, 7 = 9.5 Hz). Reduction of 9 with 
NaBHsCN in wet THF afforded the 7-epi isomer of 11 which 
would be produced by intermolecular hydride attack on the 
intermediate 10. The epoxide, however, could be successfully 
converted to the diol 10 by treatment with NaBH3CN in dry 
HMPA1' (room temperature, 2 h). Interestingly, no double-
bond reduction took place under these conditions. The two 
hydroxyl groups of the product (10) were proven to be both 
axial (5 4.68 (dd, 7 = 8,7 Hz, H-8), 4.52 (d, 7 = 4.5 Hz, H-6)), 
and a reasonable intermediate in this reaction could, therefore, 
be a cyclic cyanoborohydride, such as 10a in which X is CN. 
So without isolating 10, the reaction mixture was treated with 
5 to 6 equiv of BH3-THF at -45 0C for 6 h to complete the 
exchange of CN to H. This reaction proceeded as was expected 
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to afford 11 (70% yield), an intramolecular conjugate reduc­
tion product: mp 128-129 0C; 8 3.74 (d, J = 4 Hz, HJ , 2.60 
(dd, 7 = 11,4 Hz, HJ , 3.60 (dd, 7 = 11,10 Hz, HJ, 2.08 (td, 
7 = 10, 2.5 Hz, HJ , 3.84 (br ddd, 7 = 10, 9, 5 Hz, HJ, 1.60 
(dd, 7 = 14, 9 Hz, Hf), 1.85 (dd, J = 14, 5 Hz, H8), 4.17 (s, 
HJ , 3.95 (d, 7 = 2.5 Hz, H1).

12 

The total synthesis of 1 was completed from 11 by the fol­
lowing procedure. 11 was hydrolyzed (Amberlite IRA400, 
MeOH, room temperature, 30 min); the resulting carboxylic 
acid was eluted from the resin with aqueous TFA; the eluate 
after standing for 30 min at room temperature was evaporated 
to dryness; and the residue was successively treated with 
Et2NH-formalin (15 min at room temperature and then 30 
min at 100 °C13a) and with NaOAc-AcOH (30 min at 100 
0C).13 The crude product was extracted with CH2Cl2 and then 
chromatographed14 on silicagel to afford 1 in 22% yield. 
Crystallization from CHCl3 gave colorless prisms, mp 206 0C 
(uncorrected), whose physical properties (NMR, IR, mass 
spectrum) were identical with those reported already.2'3 
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Total Synthesis of (S)-12-Hydroxy-5,8,14-c/s,-
lO-frans-eicosatetraenoic Acid (Samuelsson's HETE) 

Sir: 

The title substance (1), commonly referred to by the 
discoverers' abbreviation HETE,1-2 is a biologically significant 
human metabolite of arachidonic acid. Although very little is 
known at present concerning the biological role(s) of HETE 
in cell function there can be little doubt that crucial findings 
will emerge from future studies of this compound and its im­
mediate precursor, the corresponding hydroperoxide. Since 
the biosynthesis of these substances from arachidonic acid is 
not inhibited by aspirin or indomethacin,1 in contrast to the 
prostaglandin endoperoxides PGG2 and PGH2, the formation 
of HETE is expected to be especially interesting in the case of 
human subjects receiving such medication. It is also note­
worthy that very high levels of HETE have been observed in 
epidermal tissue of humans affected by the serious skin disease 
psoriasis.3 For these reasons and also because of the difficulty 
of obtaining material from natural sources in greater than 
submilligram quantities, we have developed the chemical 
synthesis of HETE described herein. The synthesis leads di­
rectly to the natural antipode without the need for resolu­
tion. 

Reaction of the diethyl ester of (S-(—)-malic acid (natural 
form) with 2-methoxypropene4 under catalysis by a trace of 
phosphorous oxychloride5 at 23 0C for 1 h afforded the pro­
tected ester 26 (100%) which underwent reduction to 3 
(LiAlH4 in THF, reflux, 5 h, 79%) and cyclization (BF3-Et2O 
in ether at 23 0C for 2 h) to give the 1,2-acetonide of 1,2,4-
butanetriol 47 (86%), [a]25

D -1.86° (c 1.6, CH3OH). Collins 
oxidation7 of 4 produced the aldehyde 5 which was transformed 
into the cis olefin 6 [a]20

D +23.8° (c 1.8, CHCl3), by reaction 
with 1-hexylidenetriphenylphosphorane in THF (30 min at 
-78 0C, 30 min at O 0C, and 3 h at 25 0C)7 (68% overall yield 
from 4). The diol 7 (from 6 and 1 N hydrochloric acid in THF 
at 47 0C for 3 h) was converted to the primary mesitylene-
sulfonate (1 equiv of sulfonyl chloride in ether-pyridine at —20 
0C for 1 h and 0 0C for 32 h), and thence to the iodo alcohol 
8 (96%) with sodium iodide in acetone in darkness at 25 0C for 
70 h, and finally to the phosphonium iodide 9 (triphenyl-

phosphine in benzene at 40 0C for 5 days in darkness, 86%). 
A second component for the convergent synthesis of 1, the 

aldehyde 15, was prepared as follows. 5-Tetrahydropyranyl-
oxy-3-pentyn-l-ol (1O)8 was converted via sequential reaction 
with p-toluenesulfonyl chloride-pyridine and sodium iodide 
in acetone to the iodide 11 (90%) and thence with 3 equiv of 
triphenylphosphine in acetonitrile at 25 0C for 96 h (in the 
presence of precipitated calcium carbonate) into the acetylenic 
phosphonium salt 12 (70%). Hydrogenation of 12 over palla­
dium/calcium carbonate afforded the corresponding cis eth-
ylenic phosphonium salt (97%) which upon reaction with 1 
equiv of n-butyllithium in THF (to generate ylide 13) and 
further treatment with methyl 4-formylbutyrate9 produced 
the cis,cis diene 14 (72%). Cleavage of the tetrahydropyranyl 
group in 14 (methanol containing p-toluenesulfonic acid, 1 h 
at 25 0C, 94%) and oxidation of the resulting alcohol with 
excess activated manganese dioxide10 in ether led cleanly to 
the easily isomerizable cis.cis aldehyde 15 which was used 
immediately in the final coupling step because of its labil­
ity.11 

The coupling of the aldehyde 15 and the phosphonium re­
agent 9 was effected via the /?-oxido ylide derived from the 
latter.7'12 Reaction of 9 (rigorously dried by repeated azeo-
tropic distillation of solvent from a toluene-THF solution) with 
2 equiv of methyllithium in THF solution at -78 0C for 5 min 
and -25 0C for 30 min afforded the deep red oxido ylide 16. 
The solution was diluted with 10 vol of toluene, cooled to -78 
0C and treated with the aldehyde 15 at that temperature for 
5 min and at —30 0C for 1 min. Hexamethylphosphoric amide 
(4 equiv) was added to accelerate elimination of triphenyl­
phosphine oxide and the reaction mixture was allowed to warm 
over 2 h from -30 to -10 0C. Extractive isolation and chro­
matography on silica gel (petroleum ether-ether for develop­
ment) afforded as the major reaction products the methyl ester 
17 and triphenylphosphine oxide. The structure of 17 was 
completely corroborated by spectral data, especially important 
being the 1H NMR spin-decoupled spectra which showed a 
single trans double bond between carbons 10 and 11, and the 
UV spectrum1 (found, Xmax 237 nm (e 32 800)). The 1H NMR 
spectra of synthetic 17 and the methyl ester (CH2N2) of nat­
urally derived HETE were identical, as were the mass spectra13 
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